There is a lot of buzz these days about cloud computing and how it’s going to revolutionize the way we do business. While cloud computing isn’t new—it has been around for over 10 years in various forms—it seems to be approaching critical mass. We understand it better today. In this paper, we will provide clear definitions for each cloud implementation, discuss vetting strategies for the selection of cloud services, and talk about ongoing management requirements for these services once they are deployed. Please note that this is not a comprehensive cloud deployment strategy paper, rather an introduction providing direction for further exploration into the cloud.

Definition of Terms

In order to properly begin a conversation on cloud computing, it’s important to define the terms and use them when designing a cloud deployment strategy to meet your company’s business needs. Listed below are the National Institute of Science and Technology’s (NIST) definition of cloud computing and its underlying components. Please get familiar with them as they are imperative to understanding how your company can best leverage a cloud environment.

Cloud Computing Definition

Cloud computing is “a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

Service Models

Cloud Software as a Service (SaaS): The capability provided to the consumer is to use the provider’s applications running on a cloud infrastructure. The applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based email). The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.

Cloud Platform as a Service (PaaS): The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems or storage, but has control over the deployed applications and possibly application hosting environment configurations.

Cloud Infrastructure as a Service (IaaS): The capability provided to the consumer is to provision processing, storage, networks and other fundamental computing resources where the consumer is able to deploy and run arbitrary software which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure, but has control over operating systems including storage, deployed applications, and possibly limited control of select networking components (e.g., host firewalls).

Deployment Models

Private cloud: The cloud infrastructure is operated solely for an organization. It may be managed by the organization or a third party, and may exist on premise or off premise.

Community cloud: The cloud infrastructure is shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, and policy and compliance considerations). It may be managed by the organizations or a third party, and may exist on premise or off premise.

Public cloud: The cloud infrastructure is made available to the general public or to a large industry group, and is owned by an organization selling cloud services.

Hybrid cloud: The cloud infrastructure is a composition of two or more clouds (private, community or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load balancing between clouds).

As you can see, the term “cloud computing” incorporates many types of service and deployment models. The use of the all-encompassing term “the cloud” is highly overused; it does not accurately describe what type of services are actually to be procured or how they are being deployed, so it is difficult to determine the risk associated with them. With our nomenclature in place, let’s move on to the next building block.

One Cloud Does Not Fit All: What Cloud Services Could Work for You

If a company is to understand what risks are associated with moving portions of their network into a cloud environment (I know of no fully deployed cloud network), they must first understand (map) their network, classify their information assets, identify which deployment models and services align with the company’s IT and security strategy, and then vet the solution providers to ensure they can meet the company’s particular requirements.

Step 1: Map Network

This is critical as your network topology should include all physical and virtual segments, so that the most efficient and secure design can be achieved. Note that network mapping should not just include the physical network; it should include the identification of all applications, databases and data flows, so that each component of the network can be properly aligned with corporate security policy.
Step 2: Classify Assets

Now that the network is properly mapped, the data flows should be reviewed to ensure that each of the information assets is properly classified. If you are not familiar with asset classification, I have attached a sample matrix (Table 1), so you may familiarize yourself with this process. Notice that the classification of an asset will drive who has access to the information, how it is transmitted and stored, and ultimately how it is destroyed. Asset classification is a cornerstone of your information security program and proper implementation of this control will greatly enhance your organization’s ability to meet its legal and regulatory requirements relative to the safekeeping of consumer data.

Table 1 – ISO 2701 Information Classification Matrix

<table>
<thead>
<tr>
<th>CATEGOR</th>
<th>DESCRIPTION</th>
<th>PUBLIC</th>
<th>INTERNAL</th>
<th>CONFIDENTIAL</th>
<th>PRIVATE</th>
<th>SEGREGATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIDENTIAL</td>
<td>Highly sensitive or valuable information that is not proprietary or privileged. Must not be disclosed outside the organization without the explicit permission of the Director level officer responsible for such information.</td>
<td>Print: internal data, research, internal memos, projects, spreadsheets, and documents restricted to management. Digital: email, network.</td>
<td>Print: internal memos, research, internal memos, projects, spreadsheets, and documents restricted to management. Digital: email, network.</td>
<td>Print: confidential reports, executive summaries, legal documents. Digital: email, remote network access.</td>
<td>Print: personal information, employee records. Digital: email, remote network access.</td>
<td>Print: personal information, employee records. Digital: email, remote network access.</td>
</tr>
<tr>
<td>SEGREGATED</td>
<td>Highly sensitive or valuable information that is not proprietary or privileged. Must not be disclosed outside the organization without the explicit permission of the Director level officer responsible for such information.</td>
<td>Print: internal data, research, internal memos, projects, spreadsheets, and documents restricted to management. Digital: email, network.</td>
<td>Print: internal memos, research, internal memos, projects, spreadsheets, and documents restricted to management. Digital: email, network.</td>
<td>Print: confidential reports, executive summaries, legal documents. Digital: email, remote network access.</td>
<td>Print: personal information, employee records. Digital: email, remote network access.</td>
<td>Print: personal information, employee records. Digital: email, remote network access.</td>
</tr>
</tbody>
</table>

Table 1 – ISO 2701 Information Classification Matrix

2 Courtesy of the ISO27k implementers' forum www.ISO27001security.com

Cloud Basics – Strategies for Secure Cloud Computing
Step 3: Map Assets to Cloud Deployment Models

When information assets have been mapped and classified, you are in a position to identify which type of cloud model and may fit your organization’s needs. As you can see in Table 2 (below), the type of information resident on your system will drive your security needs and your security needs will, in turn, determine which cloud deployment model is right for your organization.

Table 2 - Mapping the Cloud Model to the Security Control & Compliance Model

Step 4: Evaluate Potential Cloud Service Models and Providers

This step is a bit tricky and requires you to look at the solution to ensure that it meets both the requirements set forth by your IT department and information security policy. If the solution is deficient in either, then it is not a match. All SLAs should contain language that covers you from both of these perspectives and provide the ability to independently validate the security of the solution. Furthermore, particular attention should be paid to the portability of the data from this solution or provider so that migration from the solution or provider can be achieved relatively easily. It is also important that a financial review of the cloud vendor be conducted prior to deployment as this their financial condition will have significant impact on their operations and your services.

After identifying potential solutions, the next building block on the cloud foundation is a deeper dive into the solutions security posture.

Basic Security Still Applies to the Cloud: You Can’t Outsource Responsibility!

The title of this section should be self-evident, but I’ll reiterate for the sake of clarity. Just because a section of the network isn’t managed by your company doesn’t mean that the data you put on this network isn’t subject to your

3 Security Guidance for Critical Areas of Focus in Cloud Computing V2.1
company’s policies and procedures for the securing that data. Ensuring that the cloud vendor or solution you’ve selected meets or exceeds your company’s policy for the securing of data (that will be stored or processed by that vendor or solution) is key to the implementation of a successful cloud deployment.

Note: This paper is just a cursory view of how we think about the cloud. Please visit the following resources for a more in-depth view of cloud security and vendor evaluation tools: Cloud Security Alliance at www.cloudsecurityalliance.org, and Jericho Forum at www.opengroup.org/jericho/.

After the vendor or solution has been selected and reviewed to ensure it’s in line with your organization’s IT requirements and security policies, there is still one more step to completion.

Vigilance is the Price of the Cloud: Ongoing Monitoring is a Must

Ah, yes, the much maligned vendor management program. You’ve gone through the trouble of identifying a cloud solution that fits your organization’s needs. However, it is imperative to have the right tools in place to ensure that the solution or vendor continues to live up to the obligations set forth in the contract/SLA. It is up to you to determine what is important to your organization (99% availability, compliance with the PCI DSS standard, etc.), but it must be in writing and you must have an independent way to validate that the solution or vendor is meeting your criteria (this would be transparency, another essential requirement of a cloud solution). If you have an internal audit team, this would be a good use of their time. If not, then ensure someone on your staff has the skill set to pull together and execute a vendor audit or monitoring program.

Network in the Cloud, Feet on the Ground: Pulling it All Together

The principles involved in cloud computing are not that complicated (but the technical details are!) and they aren’t that new. As a matter of fact, many of them leverage the technologies and processes currently found in the mainframe environment. So don’t let someone bamboozle you into thinking that it’s this new-fangled thing. Using sound judgment and existing security techniques, you may find the portion of the cloud that’s the right fit for your company’s growing network needs.

Jim Bibles leads the Business and Product Development teams for ComplyGuard Networks. He is widely recognized as an expert in the development and implementation of risk-based compliance programs. His focus for the past 10 years has been in the payment space where he has implemented information security and merchant PCI DSS compliance programs for such companies as Visa Inc. and Wells Fargo Merchants Services. His current focus is developing merchant network vulnerability and risk management tools for small to medium-sized businesses and their service providers, so that they are in a better position to make intelligent, risk-based decisions on how they secure their network. Jim is a QSA and is an active thought leader within the payments community.

About ComplyGuard Networks

ComplyGuard Networks has more than 30 years of combined expertise in network security including vulnerability assessments, audit, penetration testing, and web application security. Our intellectual property portfolio positions ComplyGuard Networks uniquely in statutory and policy compliance. ComplyGuard Networks can provide any PCI or network security-related services businesses may require. For more information, contact us at 210-835-2000 or email info@complyguardnetworks.com. On the Web, visit www.complyguardnetworks.com.